Signalling network with a bistable hysteretic switch controls developmental activation of the sigma transcription factor in Bacillus subtilis.
نویسندگان
چکیده
The sporulation process of the bacterium Bacillus subtilis unfolds by means of separate but co-ordinated programmes of gene expression within two unequal cell compartments, the mother cell and the smaller forespore. sigmaF is the first compartment-specific transcription factor activated during this process, and it is controlled at the post-translational level by a partner-switching mechanism that restricts sigmaF activity to the forespore. The crux of this mechanism lies in the ability of the anti-sigma factor SpoIIAB (AB) to form alternative complexes either with sigmaF, holding it in an inactive form, or with the anti-anti-sigma factor SpoIIAA (AA) and a nucleotide, either ATP or ADP. In the complex with AB and ATP, AA is phosphorylated on a serine residue and released, making AB available to capture sigmaF in an inactive complex. Subsequent activation of sigmaF requires the intervention of the SpoIIE serine phosphatase to dephosphorylate AA, which can then attack the AB-sigmaF complex to induce the release of sigmaF. By incorporating biochemical, biophysical and genetic data from the literature we have constructed an integrative mathematical model of this partner-switching network. The model predicts that the self-enhancing formation of a long-lived complex of AA, AB and ADP transforms the network into an essentially irreversible hysteretic switch, thereby explaining the sharp, robust and irreversible activation of sigmaF in the forespore compartment. The model also clarifies the contributions of the partly redundant mechanisms that ensure correct spatial and temporal activation of sigmaF, reproduces the behaviour of various mutants and makes strong, testable predictions.
منابع مشابه
Loss of ribosomal protein L11 blocks stress activation of the Bacillus subtilis transcription factor sigma(B).
sigma(B), the general stress response sigma factor of Bacillus subtilis, is activated when the cell's energy levels decline or the bacterium is exposed to environmental stress (e.g., heat shock, ethanol). Physical stress activates sigma(B) through a collection of regulatory kinases and phosphatases (the Rsb proteins) which catalyze the release of sigma(B) from an anti-sigma(B) factor inhibitor....
متن کاملDevelopmental Biology: Regulation by Selective Gene Localization
Recent studies have shown that, early during sporulation in Bacillus subtilis, the temporary exclusion of 70% of the chromosome from the forespore compartment is critical to the regulated activation of two major transcription factors, sigma(F) and sigma(E).
متن کاملThe Bacillus subtilis GTP binding protein obg and regulators of the sigma(B) stress response transcription factor cofractionate with ribosomes.
Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of the sigma(B) transcription factor. We investigated Obg's cellular associations by differential centrifugation of crude B. subtilis extracts, using an anti-Obg antibody as a probe to monitor Obg during the fractionation, and by fluorescent microscopy of a B. subtilis strain in which Obg was fused to...
متن کاملA Novel Feedback Loop That Controls Bimodal Expression of Genetic Competence
Gene expression can be highly heterogeneous in isogenic cell populations. An extreme type of heterogeneity is the so-called bistable or bimodal expression, whereby a cell can differentiate into two alternative expression states. Stochastic fluctuations of protein levels, also referred to as noise, provide the necessary source of heterogeneity that must be amplified by specific genetic circuits ...
متن کاملStructural and functional characterisation of partner-switching regulating the environmental stress response in B. subtilis
The general stress response of Bacillus subtilis and close relatives provides the cell with protection from a variety of stresses. The upstream component of the environmental stress signal transduction cascade is activated by the RsbT kinase that switches binding partner from a 25S macromolecular complex, the stressosome, to the RsbU phosphatase. Once the RsbU phosphatase is activated by intera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2006